
SYNAPTOGENESIS ON THE SPINNAKER, MAY 2014 1

Effects Of Real-time Synaptic Plasticity Using
Spiking Neural Network Architecture

Matthew Frazier Nishant Shukla Worthy Martin

Abstract—Artificial Neural Networks is a promising approach
to study human brain computation in hopes of achieving sim-
ilar learning by artificial agents. Recent architecture design of
a low-power supercomputer by the University of Manchester,
the SpiNNaker, has made it easier to design highly parallel
brain-inspired algorithms. We used the SpiNNaker machine to
implement a neural network capable of rewiring its connection
in real-time while trying to minimize information loss and
maximize the decrease in statistical dependence. We believe this
is the first use of synaptogenesis on a spiking neural network
architecture, laying the framework for future efficient brain-like
neural networks. Additionally, we explored scalability issues and
unintended pitfalls with this approach.

Keywords—Neural Networks, Synaptogenesis, SpiNNaker

I. INTRODUCTION

ARTIFICIAL neural networks often require vast amounts
of computation memory and space [1]. Some of the

most effective algorithms such as back propagation do not
scale well for a network consisting of a billion or more
neurons [4]. Furthermore, most neural network models do not
fully utilize the machine on which they run. The ones that
do fully utilize their machine are typically implemented on
Graphical Processing Units (GPUs) which disproportionately
drain energy.

Finding a solution to revive neural networks to the same
computational caliber as other paradigms, such as Support
Vector Machines (SVM), would better adhere to biologically
based design. Studying biologically inspired structures as
opposed to statistically based ones allows us to grasp a better
understanding of the human brain. By designing a neural
network experiment on a new kind of computer architecture,
this paper aims to demonstrate the high performing nature of
neural networks.

Recently, deep feedforward neural networks have risen
in popularity [22]. Multiple deep-learning approaches have
proven to be practical. However, a major issue with deep-
learning is the computation time for large networks. Deep-
learning does not scale well due to the innate use of back-
propagation in the algorithm.

Our approach to neural network learning is through an
unsupervised model on a spiking neural network architecture.
By utilizing almost every core of the 72-core energy-efficient
embedded system, we are capable of reproducing complex
neural network patterns in less than half the energy-cost. The
network creates and removes synapses in real-time, so not only
are weights learned and adjusted simultaneously, but so are the
actual connections between the neurons. We demonstrate that
introducing synaptic modification on a neural network leads

to a biologically accurate model that outperforms previous
methods in both performance and energy costs [19].

II. BACKGROUND

THE subfield of AI known as neural network computation
has recently received a large and growing amount of atten-

tion. Put simply; neural networks (NN) are computational mod-
els inspired by biological brains that are capable of machine
learning. A NN usually consists of interconnected ”neurons”
(in quotation marks for they are artificially simulated to varying
degrees of biological accuracy – but that topic is outside the
scope of this paper) which compute from their inputs and
produce various outputs, depending on the model.

This paper focuses on types of spiking neural network
(SNN) models, in which the neuronal communication (and
therefore, the computation of the system as a whole) is
achieved via message spikes, or action potentials, from one
neuron that is synapsed onto another. In this introduction, we
first describe how a SNN is a good computational represen-
tation of the brain. We then describe various different spike-
dependent spike-time learning methods used on a SNN, fol-
lowed by an exploration of various types of SNN. We discuss
why the neuromimetic hardware we use is a good platform
for experimentation with SNN [11], and then describe our
approach to the problem of simulating synaptogenesis on such
a device and propose a solution. Our design and implemen-
tation sections explore this solution in detail, and our results
section describe the outcome of our experiment. Furthermore,
we discuss future work that remains to be conducted, including
interesting implications such as computability beyond Von
Neuman architecture and Turing machines.

A. The Brain And Other Spiking Neural Networks
The brain is a spiking neural network. That is to say;

biological neurons pass information around the brain via action
potentials which travel from a neurons’ soma (cell body) down
the axon and generate synaptic events which are received by
the dendrites of all other connected neurons. Figure 1 diagrams
the relevant biological prerequisites.

The process has been simplified greatly as neurobiology is
not the focus of this paper, nor are the biological processes yet
completely understood. What is important are the overarching
properties exhibited by brains. Namely; that brains are fast,
power-efficient, and capable of obtaining, representing, and
integrating complex multi-dimensional information sets into
useful knowledge (from unreliable sensory inputs, at that).
Moreover, the property of being able to fairly reliably solve
highly complex problems is something we want computers

SYNAPTOGENESIS ON THE SPINNAKER, MAY 2014 2

Fig. 1. Visual representation of a biological neuron identifying the cell body,
dendrites, axon, and myelin sheath. Source: [27]

to have. Progress is however being made towards the goal
of making machines more like minds; indeed, the bus in a
computers’ hardware may operate at tens of MHz, while an
axon may carry only tens to hundreds of action potentials
per second, about five orders of magnitude slower than a
machine [10]. The power efficiency of the brain is still far
ahead of even the best neuromimetic hardware but the gap
is closing quickly, considering that biological evolution had
several hundred million years of a head start.

One very important property of the brain that has received
little attention by computer scientists, which is also believed
to be quintessential in mankind’s ability to adapt to and solve
new and ever-more difficult problems, is neural plasticity
involving the dynamic creation or removal of synapses. It
would be erroneous to say that no degree of plasticity has
been implemented in any type of SNN, but to the best of our
knowledge there is yet no model which allows networks to add
or remove synapses at runtime. Given that we do not yet fully
understand the mechanisms governing neural plasticity in our
own heads, it suffices to say that there is yet much work to
be done in this field of computational neuroscience in which
artificial neural networks dynamically alter their own topology
[24].

B. Overview of Spike-time coding and learning methods
Before discussing different types of artificial spiking neural

networks, it is necessary to describe various spike-time coding
and learning methods that are relevant to understanding how
the different types of spiking neural networks function.

Firstly, the distinction between rate- and rank-order coding
must be addressed. Rate order coding is, as it sounds, a way
to describe neural responses to stimulus in terms of firing rate,
paying attention to the timing between spikes of a single input.
Rank order, on the other hand, focuses on the relative timing

of spikes from all inputs [12]. Rate order has a number of
drawbacks, though the primary one is its inability to transmit
and process information in a short period of time; with n
neurons being able to transmit over the course of 10 ms
only log2(nC1) bits of information [26]. Rank order, under
the same constraints, is capable of achieving log2(n!) bits of
information [16].

As detailed in [26], rate order can be considered an analog−
to − frequency converter, while rank order would be an
analog − to − delay converter, as the time an integrate-and-
fire neuron takes to reach threshold is dependent upon input
strength. During an initial learning phase, in which a new
output neuron i is created for each N -dimensional training
input pattern, connection weights wj , i(j = 1, 2, ..., N) are
calculated based on the rank order learning rule:

wj , i(t) = α ·modorder(j,i) (1)

where wj , i is the connection weight between post-synaptic
neuron i and pre-synaptic neuron j, α is a learning parameter,
mod is a modulation factor (determining the importance of
the order of the first spikes), with order(j, i) representing
the order of spikes arriving at neuron i from all synapses
to the neuron i (has value 0 for the first spike to neuron
i, increases incrementally for each subsequent spike from
other pre-synaptic neurons) [16]. Some models using rank
order coding will also merge output neurons with similar
weight vectors based on the Euclidean distance between them,
thus reducing the number of redundant neurons that must be
simulated. In short, rank order (RO) coding is assumed to be
a better basis for model construction as it allows networks to
process more information in a shorter amount of time with
fewer redundant neurons [26]. One of the only downsides to
rank order over rate order is a slightly increased computational
overhead.

Moving on to learning methods, spike time dependent
plasticity (STDP) implements plasticity through the use of
long-term potentiation (LTP) and depression (LTD) [5], [6],
[13]. Put simply, the connection weight between two neurons
increases if the pre-synaptic neuron spikes before the post-
synaptic neuron, and the weight decreases in the reverse case.
Spike driven synaptic plasticity (SDSP) is a semi-supervised
variant of STDP in which a threshold V mth is given to
the post-synaptic neurons’ membrane potential [16]. If the
membrane potential is above V mth when an input spike ar-
rives, potentiation occurs. Otherwise, the synapse experiences
depression. These two cases are typically either shortly before
or shortly after a post-synaptic spike is emitted, respectively.

STDP is the most commonly discussed paradigm for learn-
ing in neural networks. Its benefits include its unsupervised
nature, and, significantly, the ability for the LTP and LTD
weight modifications to be calculated by the post-synaptic
neuron upon receipt of a spike. This allows the updates to
be performed at a single point in the simulation: at the spike
arrival event, which can further increase the efficiency of a
simulation [5], [6].

We will later describe a new learning method referred to
as synaptogenetic spike time dependent plasticity (SSTDP),

SYNAPTOGENESIS ON THE SPINNAKER, MAY 2014 3

utilizing STDP and governed by biologically inspired synapto-
genetic formulas taken from [3], and influenced by Information
Theory from Shannon.

C. Types of Spiking Neural Networks

(a) A spiking neural network (SNN) is the most basic
form, in which synaptic weights are static and neurons
communicate via message spikes. While they have some
drawbacks, an SNN is still a fairly powerful biologically-
inspired model.

(b) An evolving spiking neural network (eSNN) evolves
its functionality and structure based on incoming infor-
mation using the RO rule, but only during a learning
phase [16]. Once a neurons’ weight has been set, how-
ever, this model does not allow for any further tuning of
synaptic weights to reflect on other incoming spikes at
the same synapse. That is to say; these synapses can cap-
ture some long-term memory during the learning phase,
but have little ability to capture any short term memory,
which is detrimental to the computational capabilities of
the network as a whole [16].

(c) A dynamically evolving spiking neural network
(deSNN) represents an improvement over eSNN in that
it implements not only RO learning during an initial
learning phase, but also a dynamic synaptic plasticity
mechanism so that it will continue to learn and improve
performance during a recall phase; the deSNN proposed
in [16] uses the SDSP mechanism. This fixes the primary
shortcoming of the eSNN model; allowing for short term
memory to be stored easily, and to be potentiated as long
as it remains useful [16].

D. SpiNNaker

The Spiking Neural Network Architecture (SpiNNaker)
board is a neuromimetic hardware system designed by the
University of Manchester with the eventual intent of simulating
the human brain. Each SpiNNaker processing node is a multi-
core system-on-chip (SoC) with 1GB SDRAM, containing 18
ARM968 processor cores, connected in a toroidal triangular
mesh with passed messages being managed by an on-chip
router for an asynchronous packet-switched network-on-chip
(NoC) [20]. It is the brainchild of Steve Furber, and has a
number of properties that make it useful for neural computa-
tion:
(a) Fast: The SpiNNaker system has a bisection bandwidth

of over 5 billion packets/s [8]. It is, by design, meant to
model spiking neural networks in real time. However, it
can be said to outperform biology in terms of raw speed
of neural activity [7], and must be slowed down to run
real-time simulations [8], [21].

(b) Power efficient: A simulation run on the SpiNNaker
system has been documented taking 100 nJ per neuron
per millisecond and 43 nJ per postsynaptic potential,
a smaller power consumption than any other recorded
digital simulation [23].

(c) Massively parallelized: The brain is a massively paral-
lel system populated with many low-performance asyn-
chronous components known as neurons [9]. It follows
that a digital system meant to effectively and efficiently
emulate neural activity would also be massively par-
allelized [18], though each ARM core is substantially
more complex than a single neuron, and can efficiently
model many neurons in real time [8]. Each NoC is
extended seamlessly to surrounding chips, creating a
power-efficient system-wide interprocessor communica-
tion network [20].

(d) Globally asynchronous, locally synchronous (GALS)
In a GALS system, individual processing cores have
their own clock signals, potentially with different fre-
quencies, and require no interprocessor phase-alignment
[20]. Each SpiNNaker chip is its own GALS sys-
tem, with an independently-clocked router managing
intercore and interchip communications, leading to the
SpiNNaker system as a whole also being a GALS system
[9]. Major benefits of a GALS approach include that
it eliminates any top-level system constraints (i.e. it is
decentralized), and any timing closure issues [20]. It also
offers increased flexibility regarding process variability
[9].

(e) Fault Tolerant: In any large-scale systems fault tol-
erance is a major concern, and is increases in im-
portance with the number of fallible subsystems [8].
Fault tolerance was paid a great deal of attention by
the SpiNNaker development team, and listing all the
built-in mechanisms at various levels of abstraction is
outside the scope of this paper. To summarize, fault
tolerance mechanisms exist at nearly every level of
the system, including those related to processors, the
interrupt controller, timers, and packet communications,
allowing subsystems to generally fail gracefully without
greatly affecting the performance of the system as a
whole [8].

(f) Scalable: Due to the nature inherent to its GALS design,
it is arbitrarily scalable. The only cost associated with
scaling up the system is power consumption. The full
million-core machine has an expected power budget of
around 90 kW [8].

To summarize, the SpiNNaker specifically disregards three
significant axioms of conventional supercomputing (memory
coherence, synchronization, determinism) in a way that makes
it well-suited for a wide range of biological and non-biological
applications [8].

E. Synaptic Plasticity
A difficult problem in designing neural networks is configur-

ing the initial parameters to optimize the network. For example,
defining how the neurons are connected together greatly affects
the efficiency and performance in learning [3]. Perceptrons
are often designed as bipartite graphs, where every neuron
in the pre-synaptic layer is connected to every neuron in the
post-synaptic layer. This brute-force approach to constructing
a network topology may achieve satisfactory results if the

SYNAPTOGENESIS ON THE SPINNAKER, MAY 2014 4

weights converge to the optimal values within an acceptable
time. However, a bipartite graph scales exponentially to the
number of nodes in each layer. In our solution, we let the
neural network modify itself, providing a “hands-off” approach
to designing a network.

Other than updating synaptic weights to achieve learning,
we introduce two additional forms of synaptic plasticity. In our
study, we allow new synapses to be formed (synaptogenesis),
or existing synapses to be entirely disconnected. The three
types of plasticity undergo the following principles [3], [17]:
(a) Synaptogenesis - Unlike most networks, we allow ours

to form new connections between neurons while learn-
ing occurs. The creation of a new synapse depends
on whether the post-synaptic neuron is at an optimal
activation. If not, the network considers forming a
new synapse. Additionally, synaptogenesis only occurs
between neighboring neurons, ensuring a constraint on
locality. Synapses are formed by taking into account both
receptivity and avidity [3], [17].

Avidity is the measure of ability for each neuron to
participate in a new synaptic connection, defined as

Ai(t) =
a

(a+
∑

j

∑
kWikj(t))

a =

 1.0 ∗ 1033 for unlimited avidity
1.0 for moderate avidity
1.0 ∗ 10−3 for limiting avidity

The receptivity of new synaptic connections is inversely
proportional to the running average of the neuron’s
activation. We use the following equation for receptivity,

Rj(t) =
r1

r1 + ȳj(t)r2

ȳ(t) = 0.99ȳj(t− 1) + 0.01Yj(t)

(r1 and r2 are experimental constants)

Finally, the probability of forming a new synapse be-
tween two neurons i and j depends on both avidity and
receptivity.

Prob(of new synapse ij) ∝ Ai(t) ∗Rj(t)

(b) Weight Modification - Similar to most unsupervised
weight modification rules, we use a deterministic process
depending on the pre- and post-synaptic activities. This
type of weight adjustment is based off the Hebbian rule,
where links between nodes that fire together strengthens.
Specifically, weights are adjusted using the following
formula,

4w(t+ 1) ∝ f(postj(t)) ∗ g(prej(t), wij(t))

(c) Synapse Removal - Lastly, we allow our network to
undergo synaptic removal, a stochastic process where the
probability of removal becomes non-zero if excitatory

synapses fall bellow a specified threshold. Given some
constant δ > 0, probability of synaptic removal is
defined as

Prob(removal ij) =

{
0 if wij(t) +4wij(t+ 1) > δ
> 0 otherwise

Synaptic connections are slowly modified through additions
or removals until optimal output firing levels are obtained.

Levy asserts that “information theory has gained popularity
in recent years as a tool for understanding brain recordings.”

III. DESIGN

NEURAL networks consist of biologically inspired rela-
tionships between individual nodes (neurons). Learning

in such a network occurs by intelligently adjusting weights
on the links between the nodes. We define the relationship
between nodes into the following three categories:
(a) Static - where the network topology is fixed, and can

only change by manually adjusting the relationship be-
tween nodes. Most neural networks fall into this category
because regardless of the number of nodes n, only one
fixed relationship forms between them:

NumberOfTopologies(n) = 1

(b) Semi-Dynamic - in which the network is not static, and
there is some freedom for nodes to rewire with other
nodes in real time. The complexity grows exponentially.
Each node has non-zero probability to be rewired with a
constant c number of other nodes. Given n such nodes,
the number of possible topologies can be up to

NumberOfTopologies(n) = cn

(c) Dynamic - where each node has non-zero probability to
be wired with any other neuron in the entire network.
Given n nodes, the number of possible topologies be-
comes

NumberOfTopologies(n) = nn−1

A biological neural network such as the human brain does
not follow the static network topology. Connections between
neurons in the brain are regularly formed and removed over
time [2], [3]. Moreover, such a neural network is not fully
dynamic either, since locality is a physical constraint. For
example, a neuron on the far end of the left hemisphere of
a brain might never directly connect with a neuron on the
right hemisphere.

We designed a programming framework on SpiNNaker’s
interface to enable a semi-dynamic network topology. Each
neuron has the flexibility to rewire with none, all, or some
of the fixed number of other neurons, following our synaptic
plasticity rules. To test performance, the network analyzed
the MNIST database of handwritten digits. We compared
information loss (see appendix A) from a network following
our synaptic plasticity model, to that without synaptogensis
and synapse removal.

SYNAPTOGENESIS ON THE SPINNAKER, MAY 2014 5

In order to implement a spiking neural network, we choose
an existing neural model. There exists multiple neural models
for implementing a spiking neural network. Some of the most
popular models are briefly covered below.
(a) Integrate-and-fire (IF) is one such model which incre-

ments the voltage while a current is present, and finally
resets the voltage once a threshold Vth is reached. Every
voltage reset produces a spike for that neuron. While
computationally efficient, the IF model does not exhibit
properties of the cortical spiking neurons.

(b) Leaky integrate-and-fire (LIF) models are a biologi-
cally revised version of the previous model. This model
allows for “forgetting” isolated input currents. However,
it also is insufficient for modeling cortical spiking neu-
rons.

(c) Izhikevich model is an adaptation of the Integrate-
and-fire model that uses a quadratic non-linearity when
adjusting the voltage. This model is known for its
applicability to large-scale simulations of cortical neural
networks [14], [15].

We use the Izhikevich model since it our best candidate
for a biologically inspired neuron that is simple enough to
implement on a new computer architecture. By running an
ensemble of neurons on the SpiNNaker, we wish to see both
a more energy and time efficient approach for emulating
neural networks. In direct comparison to Izhikevich’s paper
on polychronization, we present a spiking neural network on
the SpiNNaker that can also exhibit reproducible time-locked
but not synchronous firing patterns. This time-lock pattern is
referred to as polychronization [15].

These polygroups are possible due to introducing delays in
the network. The SpiNNaker machine produces natural delays
as packets are sent to and from chips. We take advantages of
the delays to discover these polygroups. A network of five neu-
rons with embedded delays can produce fourteen polygroups.
Generally, the number of polygroups is exponentially greater
than the number of neurons in a network, as long as the delays
are properly synchronized. The human brain consists of over
1011 neurons, which have the capability of producing even
more polygroups. With our implementation, we aim to uncover
the polygroups from the machine’s innate delays.

IV. IMPLEMENTATION

BY taking advantage of the multiple independent cores
on the SpiNNaker, we were able to emulate efficient

real-time synaptogenesis. The neural network consisted of 39
excitatory input neurons, 9 inhibitory input neurons, and 16
excitatory output neurons.

A. Input Spikes
The SpiNNaker neural network was given a set of letters as

input. Each letter was represented by a 48-dimensional binary
vector of 1s or 0s. Figures 2 and 3 are examples of letters
with fairly similar input vectors, for illustration.

Intuitively, a 1 represents a colored pixel, and a 0 represents
a blank pixel in a visual 8 x 6 image representation of the

Fig. 2. The letter U represented as a series of colored and blank pixels.

Fig. 3. The letter V represented as a series of colored and blank pixels.

Fig. 4. The letter A is represented by the pixel sequence
000000001100010010010010011110010010010010010010

letter. Each coordinate of the 48-dimensional input spikes its
corresponding input neuron. Figure 4 shows a letter with its
input vector.

o The letters were randomly generated by a Python script
which sends a spike to the SpiNNaker machine serially. Three
chips receive the input generated by the Python script, and
feed their generated spikes to the fourth as an output chip,
illustrated in figure 5.

B. Floating Point Arithmetic
The SpiNNaker machine has no hardware support for float-

ing point arithmetic [8]. However, the Izhikevich neural model
adjusts voltage variables based off the following equations.
4v = 0.04v2 + 5v + 140− u+ I
4u = a(bv − u)
In order to alleviate the rounding errors from only using

integer arithmetic on the SpiNNaker machine, we scale the
equations up to remove all floating points values. Then we
use integer division in the final step to obtain the actual result.

SYNAPTOGENESIS ON THE SPINNAKER, MAY 2014 6

Fig. 5. Illustration of three input and one output chips on the SpiNNaker
machine. The input chips consist of 9 total inhibitory neurons and 39 total
excitatory neurons. Each of the output neurons are excitatory.

Fig. 6. Tonic spiking of a neuron.

The rounding errors of implementing the Izhikevich model
are typically minute if apparent at all, shown in the figures 6
through 8 and 10 through 17. This is discussed in greater detail
in appendix B.

C. Parallel Design
The algorithm written on the multi-core parallel SpiNNaker

system is a translation of sequential MATLAB code used in
[15]. Instead of dealing with lists of neurons, we were able to
simple use a variable per each neuron core. Likewise, instead
of using a two-dimensional array, where one dimension was
the index of a neuron, we were able to simply use a one-
dimensional array per each neuron core. Arguably, the parallel
implementation on the SpiNNaker was easier to design due to
the code only ever acting locally on one core.

Fig. 7. Spike frequency adaptation of a neuron.

Fig. 8. Class 1 excitable neuron.

We used the weight modification rule proposed by Levy to
categorize an input set of letters [3], [17].

We implemented a single-layer perception as a proof of
concept to demonstrate synaptogenesis on the SpiNNaker
board. In our network, every input node broadcasts a data
packet to six of the output nodes. To simulate the creation
and rewiring of synapses, not all messages are registered by
the output neurons.

Each packet received by an output node is looked up in the
output node’s local list of incoming connections. If the address
from the packet is not listed in the incoming connections list,
it will be ignored, and no further computation will be done.

Synaptic connectivity is broken when weights fall below
some negative threshold. More specifically, when an average
running weight dropped below −δ for some δ > 0, the link is
considered disconnected.

New connections are established between nodes when an
average rate of activity drops below 25%. In this case, the next

SYNAPTOGENESIS ON THE SPINNAKER, MAY 2014 7

Fig. 9. The spike times of output neurons are shown in the diagram above.
Each neuron is represented by a different shade of color. Some neurons share
the same spiking patterns, so there are not 16 distinct curves. The curves
represent the timings when each neuron fires.

data packet received from a muted neuron becomes unmuted,
in hopes to raise the average rate of activity.

We combined the typical STDP mechanisms [6] with synap-
togenetic formulas from [3], [17] to created a new synaptic
plasticity mechanism, which we refer to as synaptogenetic
spike time dependent plasticity (SSTDP). This mechanism,
implemented locally on each postsynaptic neuron, handles both
synaptic weight and network-level topological modifications.

V. OUTCOMES

AFter training the network on 1000 letters pixel-by-pixel,
we were able to observe the oscillatory property described

by Izhikevich [15]. The output neurons initially fire at a
frequency of 0.476Hz, which increases gradually. This agrees
with our hypothesis that polygroup behavior is possible on a
spiking neural network architecture. Refer to Figure 9 for a
plot of the output spike times.

A. Results

The SpiNNaker machine used for our experiment was
powered solely by USB. The total power consumption of the
simulation was at most 4 Watts, which is less than 75% of the
corresponding simulation on a ThinkPad T530 Laptop.

Spikes were delivered from the host machine to the
SpiNNaker board in serial. Due to the clocking differences
between the host machine and SpiNNaker board, we slowed
down the simulation by a factor of 1000. Moreover, the internal
SpiNNaker messages are prone to packet loss. Regardless
of these shortcomings, the SpiNNaker simulation produced
expected results.

B. Conclusion

Through empirical evidence, we have shown that by taking
advantage of a spiking neural network architecture such as the

SpiNNaker, we can implement a high performance energy ef-
ficient neural network system. Without the computation draw-
backs of back-propagation, or the growing space complexity of
global variables, we are able to train a network on a machine
that uses less than 5 Watts of energy [8]. Furthermore, we have
demonstrated that a neural network can produce outstanding
results by having its input be fed in series as opposed to in
parallel.

VI. PITFALLS

SOME disadvantages are present when considering our
approach for synaptogenesis on the SpiNNaker. Program-

ming parallel applications is a challenge in its own right, but
a lack of floating point support on the SpiNNaker system [8]
compounds the difficulty, especially when the neural dynamics
parameters and coefficients in the differential equations of
Izhikevich’s simple neural model are floating point numbers
[14]. To get around this, we rationalized all coefficients in
the equations and multiplied the entire set of equations by the
lowest common multiple of the denominators of the rational-
ized coefficients. This incurred a slight loss of precision, but
not so much that the models we used exhibited different neural
activity behavior than their original counterparts with the same
input. Source code illustrating this is available upon request.

Also, due to inherent limitations to Ethernet speed, our
simulation had to be slowed by a factor of 1000 to allow
for reliable I/O communications with the host machine. There
are plans in motion to accommodate for faster communication
between SpiNNaker boards and host machines, so this will no
longer be an issue once higher speed I/O is achieved.

VII. FURTHER STUDY

THIS paper reveals multiple questions that still need to
be examined further. A key feature of the SpiNNaker

machine is its ability to connect to other SpiNNaker chips
for scalable performance. Future papers can examine the per-
formance of a network of multiple SpiNNaker chips together.
It’s been shown that with “quarter of a million neurons, tens
of millions of synapses and dynamic activity of over a billion
synaptic events per second can be delivered within a 30 W
power envelope. [25]”

SYNAPTOGENESIS ON THE SPINNAKER, MAY 2014 8

APPENDIX A
SHANNON’S ENTROPY AND MUTUAL INFORMATION

Entropy is the measure of information in a system. We use it
to measure the unpredictability of information content. Mutual
information is a measure of the mutual dependence between
two random variables. It can be expressed in terms of entropy.

A. Entropy
The entropy of a series of data is the expected value of the

information.

H(X) = E[I(X)]

Information has the units of bits when the logarithm in the
equation below is in base 2.

I(X) = −log(P (X))

B. Mutual Information
The mutual information between two random variables X

and Y is expressed in the equation below.

I(X;Y) =
∑

y∈Y
∑

x∈X p(x, y)log(p(x,y)
p(x)p(y))

An equivalent, but simpler equation is in terms of only
entropy of the X and Y random variables.

I(X;Y) = H(X)−H(X|Y)

APPENDIX B
FLOATING POINT VS. INTEGER ARITHMETIC

Figures 6 through 8 and 10 through 17 illustrate the com-
parison between using the floating point arithmetic found
in Izhikevich’s original neural models [14] and the integer
arithmetic we formulated for our experiment. In most cases
the behavior of each is indistinguishable from one another.
However, note the visually apparent rounding errors figures 10
and 12. Since our experiment used exclusively the tonic spiking
integer arithmetic (with slight modifications to distinguish
between excitatory and inhibitory neurons) from figure 6, the
rounding errors were not a problem.

Fig. 10. Class 2 excitable neuron.

Fig. 11. Subthreshold oscillatory neuron.

Fig. 12. Spiking resonator neuron.

SYNAPTOGENESIS ON THE SPINNAKER, MAY 2014 9

Fig. 13. Integrator neuron.

Fig. 14. Rebound burst neuron.

Fig. 15. Threshold variability neuron.

Fig. 16. Bistability neuron.

Fig. 17. Accommodation neuron.

ACKNOWLEDGMENT

The authors would like to thank Professor Worthy Martin,
Associate Professor of Computer Science at the University of
Virginia. The authors also greatly appreciate the generosity
of the SpiNNaker team from the APT Research Group at the
University of Manchester, who were gracious enough to not
only loan the neuro-computing device, but also to help us
debug issues whenever possible.

SYNAPTOGENESIS ON THE SPINNAKER, MAY 2014 10

REFERENCES

[1] D. Adelsberger-Mangan and W. Levy in International Joint Conference
on Neural Networks 4, 1992

[2] D. Adelsberger-Mangan and W. Levy in Biological Cybernetics 67,
1992, pp. 469-477

[3] D. Adelsberger-Mangan and W. Levy in Biological Cybernetics 70,
1993, pp. 81-87

[4] Q. Dai and N. Liu in Neurocomputing Vol. 94, 2012, pp.152-158
[5] S. Davies et al. in Proceedings of International Joint Conference on

Neural Networks, San Jose, CA, 2011
[6] S. Davies et al. in Neural Networks 32 2012, pp. 314
[7] S. Davies et al. in Proceedings of the 8th ACM International Conference

on Computing Frontiers, New York, NY, 2011, Article No. 15
[8] S. Furber et al. in IEEE Transactions on Computers, Vol. 62, No. 12,

2013, pp. 2454-2467
[9] S. Furber and A. Brown in Ninth International Conference on Applica-

tion of Concurrency to System Design, 2009, pp. 3-12
[10] S. Furber and S. Temple in Journal of the Royal Society Interface 4,

2007, pp. 193-206
[11] F. Galluppi et al. in Proceedings of the 9th conference on Computing

Frontiers, New York, NY, 2012, pp. 183-192
[12] F. Galluppi and S. Furber in Internation Joint Conference on Neural

Networks, San Jose, CA, 2011, pp. 943-950
[13] J. Humble et al. in From Brains to Systems, Springer New York, 2011,

pp. 19-31
[14] E. Izhikevich in IEEE Transactions on Neural Networks 14, 2003, pp.

1569-1572
[15] E. Izhikevich in Neural Computation 18, 2006, pp. 245-282
[16] N. Kasabov et al. in Neural Networks 41, 2013, pp. 188-201
[17] W. Levy in Neurocomputing 58-60, 2004, pp. 343-350
[18] J. Navaridas et al. in Proceedings of the 23rd international conference

on Supercomputing, 2009, pp. 286-295
[19] L. Plana et al. in IEEE Design and Test archive, Vol. 24 No. 5, 2007,

pp. 454-463
[20] L. Plana et al. in ACM Journal on Emerging Technologies in Computing

Systems, Vol. 7, No. 4, 2011
[21] A. Rast et al. in Neural Networks 24, 2011, pp. 961-978
[22] S. Siniscalchi et al. in Neurocomputing Vol 106, 2013, pp. 148-157
[23] T. Sharp et al. in Journal of Neuroscience Methods 210, 2012, pp. 110-

118
[24] K. Stanley and R. Miikkulainen in Evolutionary Computation, Vol. 10

No. 2, 2002, pp. 99-127
[25] E. Stromatias et al. in The International Joint Conference on Neural

Networks, 2013, pp. 1-8
[26] S. Thorpe and J. Gautrais in Computational Neuroscience; trends in

research, 1998, pp. 113-118
[27] Image, unedited, taken from http://ehumanbiofield.wikispaces.com/neurons+WG

under the Creative Commons license
(http://creativecommons.org/licenses/by-sa/3.0/)

