Fluent Values

Here's a formulation of fluent calculus that unifies perception with robot actions.

Learning a knowledge representation

We assume that at any given point in time, the world is in a particular *state*. Reasoning is done on *fluents*, which are functions on states. An agent is driven by its *values* to cause fluent changes.

States

An artificial agent a decodes visual v and linguistic l input to infer the most likely state s of the world. The agent receives the sensory inputs in parallel at each time-step t. Knowledge is captured in a graph G that contains spatial G_S , temporal G_T , and causal G_C concepts. The following is the likelihood of G given $\mathcal{D} = \langle v, l, g' \rangle$ (g' is the previous knowledge of the world).

$$P(G|\mathcal{D}) = P(G_S, G_T, G_C|\mathcal{D}) = P(G_S|\mathcal{D}) \ P(G_T|G_S, \mathcal{D}) \ P(G_C|G_S, G_T, \mathcal{D})$$
(1)

Knowledge acquisition (for agent a) can be formulated by maximum likelihood over all STC-AOGs, G, to sample a parse-graph pg. Figure 1 diagrams the knowledge acquisition scheme.

$$s_a^{(t)} = pg_a^{(t)} \sim g_a^{(t)} = \underset{g}{\operatorname{argmax}} P_G(\ G = g \mid v_a^{(t)}, l_a^{(t)}, g_a^{(t-1)})$$
(2)

Figure 1: Knowledge is acquired through a noisy medium of vision and language.

Fluents

A fluent f is a function on a state $s^{(t)}$. We assume there is a large number N of fluents, and index f_i for $i \in \{1, ..., N\}$.

A fluent-vector $F = (f_1, ..., f_N)$ on a state $s^{(t)}$ is a vector of all fluents f_i stacked together.

An action is defined as a change in a fluent-vector $\triangle F$.

Values

The "value of a state" V(s) is defined by a potential function U on the fluent-vector.

$$V(s^{(t)}) = U(F(s^{(t)})) \in \mathbb{R}$$
(3)

We assume U is linear, so each fluent f_i has a corresponding weight $\omega_i \in \mathbb{R}$. The value of a state is computed by the learned ω_i weights.

$$V(s^{(t)}) = \omega^{\mathsf{T}} F(s^{(t)}) = \sum_{i=1}^{N} \omega_i f_i(s^{(t)})$$
(4)

An agent learns the value of states by witnessing fluent-changes $F(s^{(t)}) \to F_2(s^{(t+1)})$. The learning problem boils down to minimizing $||\omega||_1$ that satisfy the following constraints:

• If a relevant action caused $||\frac{f_i(s^{(t)})}{dt}|| > ||\frac{f_j(s^{(t)})}{dt}||$ then $\omega_i > \omega_j$. "A fluent that changes due to a relevant action should have a high

"A fluent that changes due to a relevant action should have a higher weight."

• If an irrelevant action caused $||\frac{f_i(s^{(t)})}{dt}|| > ||\frac{f_j(s^{(t)})}{dt}||$ then $\omega_i < \omega_j$. "A fluent that changes due to a irrelevant action should have a lower weight."

Inferring actions from learned model

The inference step performs an action ΔF given the current state s. The action ΔF is independent of the actuators of an agent. The goal of action selection is to minimize the amount of work required to achieve ΔF .

Let Ψ be a random variable representing a possible action the robot can take. Inferring which action to perform is also a function of the previous $m \in \mathbb{N}$ actions and the current state s. All together, it's formulated as a maximum likelihood estimate:

$$\psi_{a}^{(t+1)}(\triangle F) = \operatorname*{argmax}_{\psi} P_{\Psi}(\Psi = \psi \mid s_{a}^{(t)}, \triangle F, \psi_{a}^{(t-m)}, ..., \psi_{a}^{(t)})$$
(5)

Figure 2: To achieve a fluent change, the agent follows the gradient of values.