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Abstract— We propose a stochastic graph-based framework
for a robot to understand tasks from human demonstrations
and perform them with feedback control. It unifies both
knowledge representation and action planning in the same
hierarchical data structure, allowing a robot to expand its
spatial, temporal, and causal knowledge at varying levels of
abstraction. The learning system can watch human demonstra-
tions, generalize learned concepts, and perform tasks in new
environments, across different robotic platforms. We show the
success of our system by having a robot perform a cloth-folding
task after watching few human demonstrations. The robot can
accurately reproduce the learned skill, as well as generalize the
task to other articles of clothing.

I. INTRODUCTION

Writing automated software on robots is not nearly as
robust as that on traditional computers. This is due to the
heavy burden of matching software assumptions to physical
reality. The complexities and surprises of the real world
require robots to adapt to new environments and learn new
skills to remain useful.

In robot automation, implicit motor control is widely
used for learning from human demonstrations [1] [2] [3].
However, implicit motor control is insufficient for gener-
alizing robot execution. For instance, a robot can imitate
a human’s demonstration to open a door; yet, it cannot
execute a similar motion trajectory such as opening a window
without the explicit representation of the task. Intuition such
as how to rotate the joints of an arm is not something
easily expressible, but rather learned through experiences.
Uniting explicit and implicit knowledge allows immediate
communication through natural language [8], as well as clear
grounding of abstract concepts into atomic actions.

In this paper, we propose a unified framework to bridge
the implicit motor control with explicit high-level knowledge
so the robot can understand human behavior, perform a
task with feedback control, and reason in vastly different
environments. As a proof of concept, we teach a robot how
to fold a shirt through few human demonstrations, and have
it infer how to fold never-before-seen articles of clothing,
such as pants or towels. The same causality-learning frame-
work can be extrapolated to arbitrary tasks, not just cloth-
folding. Specifically, the robot can learn different skills (e.g.
flattening, stretching) depending on which features it tracks
(e.g. smoothness, elastic stress). Moreover, since explicit
knowledge is structured graphically, our framework naturally
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allows for the merging, trimming, and addition of knowl-
edge from various human demonstrations, all with feedback
control. The high-level concepts are human-understandable,
so both the human and robot can communicate through
this intermediate language [7]. Thus, programming the robot
becomes an act of merely modifying a graph-based data
structure.
The contributions of this paper include the following:

e Proposes a cross-platform stochastic framework for
robots to ground human demonstrations into hierarchi-
cal spatial, temporal, and causal knowledge.

« Demonstrates a robot capable of learning, correcting its
mistakes, and generalizing in a cloth-folding task from
human demonstrations.

o Establishes the first system to use a non-rigid physical
simulation to model the robot’s environment to improve
task execution.

o Provides experimental evidence of our framework to
generalize a cloth-folding task across different clothes
and different robot platforms.

II. RELATED WORKS

While precisely grounding a human demonstration to
atomic robot actions has been done in various forms [6]
[13] [26], we instead focus on the novel representation and
generalizability of tasks. Beetz et al. integrate robot knowl-
edge representation into the perception processes as well,
but our framework allows alternative planning generated
by probabilistic sampling to match observed expectations.
For example, there are multiple ways to fold a t-shirt, and
each of these ways has its own likelihood. Our probabilistic
learning framework resembles closest to the human-inspired
Bayesian model of imitation by Rao et la. [21]. However, we
instead emphasize the hierarchical and ever-changing nature
of spatial, temporal, and causal concepts in the real world.

Autonomously folding clothes has been demonstrated in
various works. Wang et al. [29] were able to successfully
design a perception-based system to manipulate socks for
laundry. Miller et al. [11] have demonstrated sophisticated
cloth-folding robots, and Doumanoglou et al. [28] have made
substantial progress in autonomously unfolding clothes. On
the other hand, our focus is to understand how to perform
arbitrary tasks. There are other systems [6] that also learn
concrete action commands from small video clips, but unlike
those, our design allows a modifiable grammar and our
performance is measured on multi-step long-term actions.
Furthermore, our solution to knowledge representation is
more powerful than commonsense reasoning employed by
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The Spatial And-Or Graph on the left represents the ongoing perceptual knowledge of the world, i.e. a learned stochastic visual grammar. A

specific instance of the And-Or graph is realized in the parse graph on the right.

first-order logic [19], since it takes advantage of the proba-
bilistic models under ambiguous real-world perception.

Our work is based on the knowledge representation system
incorporated by Tu et al. [12], augmented heavily into the
robotics domain. We extend the learning of event And-
Or grammars and semantics from video [4] to our real-
time robotics framework. The And-Or graph encapsulates
a conformant plan under partial observability, enabling an
architecture that is cognitively penetrable since an updated
belief of the world alters the robot’s behavior [14]. Unlike
traditional graph planning [10], the hierarchical nature of the
knowledge representation system enables a practical way of
generating actions for a long-term goal.

III. METHOD

There is often a fine distinction between memorization
and understanding, where the latter enables generalizing
learned concepts. In order to understand a human task from
demonstrations/videos such as cloth-folding, a knowledge
representation system is necessary to ensure actions are not
simply memorized. Four types of knowledge are important
for understanding and generalizing:

« Spatial knowledge expresses the physical configuration
of the environment when performing the task. For a
cloth-folding task, a table, cloth, and each part of the
cloth, such as the left and right sleeve of a shirt, needs
to be detected.

o Temporal knowledge reveals the series of human ac-
tions in the process of the task. In cloth-folding, the
hand motion, grip opening, and grip closing actions are
essential. These actions combine together to form a fold
action.

o Causal knowledge conveys the status change of an
object in each dynamic human action. For example, a
shirt may be folded in various ways, either by folding
the left sleeve into the middle and then the right
sleeve, or vice versa. Folding a cloth requires multiple
hierarchical steps for reasoning.

o The interplay between the spatial, temporal, and
causal concepts manifests a generalizable form of
knowledge to be used in changing application domains.
The robot must choose an action to achieve a state
change by using a causal reasoning concept. Each of the
three must work together to express learned knowledge.

A. Mathematical Formulation for Human Task

Given a set of human task demonstrations D =
{D1,Ds,---,D,} such as cloth-folding videos, the goal is
to learn a joint model (Ggr¢) including Spatial, Temporal,
and Causal concepts, that we formulate as

Gre = argmax P(Gsrc|D) (1)
GsTc

= P(Gs|D) - P(Gr|D) - P(Go|D)
-P(R(Gs,Gr,Gc)|D)

where Gg is the model of spatial concepts, G is the
model of temporal concepts, G¢ is the model of causal
concepts, and R(Ggs,Gr,G¢) is the relational/conditional
model between spatial, temporal, causal concepts.

To implement this formulation, we need to define the
concrete representation for each symbol in Eq. 1. Due to
the structured and compositional nature of spatial, temporal,
and causal concepts, we adopt the hierarchical stochastic
grammar model, And-Or graph (AoG) [5], as the base of our
model representation which is introduced below. To simplify
the learning process, we marginalized the complex STC-
AoG (Ggre) into the S-AoG (Gg), T-AoG (G7) and C-AoG
(G); thus, we can learn the Gg, G and G¢ separately as
the model’s initialization, then jointly learn the conditional
model between them.

B. And-Or Graph Overview

The And-Or Graph is defined as a 3-tuple G = (V, R, P),
where V = VANP y VOR VT consists of a disjoint set
of And-nodes, Or-nodes, and Terminal nodes respectively. R
is a set of relations between Or-nodes or subgraphs, each of
which represents a generating process from a parent node to
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The Temporal And-Or Graph on the left is a database of all actions currently known in the real world. Each action has an associated agent and

patient. The realized parse graph on the right shows a generated sequence of actions directly executable by the robot.

its children nodes. P(r) is an expansion probability for each
relation.

Figure 1 shows an example of an And-Or graph. An And-
node represents the decomposition of a graph into multiple
sub-graphs. It is denoted by an opaque circle, and all the out-
going edges are opaque lines. An Or-node is a probabilistic
switch deciding which of the sub-graphs to accept. It is
denoted by an open circle with out-going edges drawn
in dashed lines. The Terminal node represents grounded
components, often referred to as a dictionary.

The nodes are structured into a hierarchical directed
acyclic graph (DAG) structure. The AoG is a combination of
a Markov tree and Markov random field, where an And-node
corresponds to a graphic template model, and an Or-node
corresponds to a switch in a Markov tree [17].

Given a set of human demonstrations D, the graph G is
composed of an AoG graph structure G and parameters 6.
The nodes and rules/edges in the graph structure aim to
maximize the objective function, denoted by the posterior
probability:

P(G|D) = P(G,6|D) (2)
= P(G|D)P(6|D,G) 3)

The first term models the structure of an And-Or graph G
from a human demonstration D. To solve the first term, we
manually design the structure of the S-AoG, but we learn
the T-AoG and C-AoG structure automatically [4] [25] [15].

The second term models the parameters 6 in the graph,
given the learned knowledge graph structure. It is reformu-
lated as follows:

P(O|D,G) o ] P(Dil6,9G) )
D;eD
~ [[ maxP(Dilpgi.0.G)P(pgil6.G) (5)
D,eD "

where pg; is the parse graph of D,. A parse graph is an
instance of G where each Or-node decides one of its children.
P(pg;|0,G) is the prior probability distribution of parse

graph pg; given G. To simply the learning process, we set it
as a uniform distribution. Thus,

P@OID,G) < [] maXP(D 1pg:,0,G) (6)

piep 7

And,

P(Dilpgi,60.6) = [ P(Chylv,62%") (D)

veEVAND
I[1 PChlv,09%) (8)

veVOR
II i) ©)

veVT

where Ch, denotes the child of a non-terminal node v €
VAND (y VOR The probability derivation represents a gen-
erating process from a parent node to its child node, and
stops at the terminal nodes to generate the sample D;. The
parameters are learned in an iterative process through a
Minimax Entropy algorithm explain in more detail later.

C. S-AoG: Spatial Concepts Model

A powerful way to capture perceptual information is
through a visual grammar to produce the most probable
interpretations of observed images. Therefore, we represent
spatial concepts through a stochastic Spatial And-Or Graph
(S-AoG) [5]. Nodes in the S-AoG represent visual informa-
tion of varying levels of abstraction. The deeper a node lies in
the graph, the more concrete of a concept it represents. An
And-node signifies physical compositionality (i.e. a wheel
is a part of a car) whereas an Or-node describes structural
variation (i.e. a car is a type of vehicle).

As demonstrated in Figure 1, the root node of the S-AoG
encompasses all possible spatial states a robot may perceive.
Here, the “Indoor scene” is decomposed into “Foreground”
and “Background,” which are then further decomposed. The
nodes deeper in the tree represent finer and finer concepts
until they end up the terminial nodes consisting of grounded
perception units such as the sleeve of t-shirt.
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D. T-AoG: Temporal Concepts Model

The action-space of the world is often an assortment of
compositional and variational sub-actions. The hierarchical
nature of actions leads us to represent actions by a stochastic
Temporal And-Or Graph (T-AoG) [4]. And-nodes correspond
to a sequence of actions (i.e. close the door, then lock it),
whereas Or-nodes correspond to alternate conflicting actions
(i.e. close the door, or open the door). The leaf nodes of
this graph are atomic action primitives that the robot can
immediately perform. Different sequences of atomic actions
produce different higher-level actions.

The T-AoG structure is learned automatically using tech-
niques from Si et al. [4] establishing an initial knowledge
base of actions. Our T-AoG does not learn new atomic
actions, but may learn higher-level actions that are built from
these atomic actions. By fixing the set of atomic actions, we
ensure the grounding of higher-level actions to alleviate the
correspondence problem. Our framework assumes detectors
of such atomic action as input.

As shown in Figure 2, the root node of the T-AoG repre-
sents all possible actions. As we traverse the tree down, the
actions become less and and less abstract, until they can no
longer be simplified. Therefore, the robot can unambiguously
perform the atomic actions represented by the leaf nodes.

The T-AoG provides us a way to define the structure and
sequence of actions, but how an action causes a change in
state is incorporated in the causality data structure defined
next.

E. C-AoG: Causal Concepts Model

Causality is defined as a fluent change due to a relevant
action. We can think of fluents as functions on a situation
x1(8),x2(8), ..., such as the state of a car’s engine (on vs. off)
or its current speed (Smph, 10mph, etc.). We use the Causal
And-Or Graph (C-AoG) to encapsulate causality learned
from human demonstration [15], as shown in Figure 3. Each
causal node is a fluent change operator, transforming an input
fluent to an output fluent by using an action from the T-AoG.
As shown in the diagram, there are various ways to reach
the same state. Or-nodes capture the various ways a fluent
may change from one state to another.
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The Causal And-Or Graph encapsulates the fluent changes per action. The parse graph on the right shows the reasoning system in action.

From the point of view of automated planning, fluents are
multi-variate observations of a state. The fluents that change
due to a relevant action are vital for predicting future actions.
If a fluent does not change from a change-inducing action,
then it is irrelevant with respect to the action. These time-
invariant properties as defined as “attributes” of the node
(i.e. color, weight). Additionally, fluents that change due to
an inertial action (i.e. actions that are irrelevant to a fluent
change) are noted inconsistent.

For example, given an cloth s, let fluent x(s) represent
high-level abstract information such as the shape of a cloth,
whereas if the cloth is a shirt, fluent 25 (s) represents specific
keypoints for shirts. The C-AoG structure is learned through
an information projection pursuit outlined by Fire et al [15].
The STC-AoG uses these relevant fluent changes to plan out
tasks.

F. Relational Model between Spatial, Temporal, Causal And-
Or Graph

Each of the three And-Or Graphs are unified into a
common framework for a complete representation of the
world [12]. This explicit knowledge is represented by a
hierarchical graphical network specifying a stochastic context
sensitive grammar [16], called the the Spatial, Temporal, and
Causal And-Or Graph (STC-AoG) [12]. The cloth-folding
task in our real-time robot framework is incorporated as
described in Figure 4.

Formally, the fluent functions Vj x;(s;) partition the reals
R. Two fluents z;(s,) and x;(s;) are identical if they belong
in the same partition. Each spatial or temporal situation s;
may have multiple fluents (z1, z2, ...).

1 (Sl)

x(s;) = | z2(si) (10)

The fluent change between two states s; and s, is formally
defined as a binary vector:

Az (sj, si)

Ax(sj,s,) = | Dxa(sy, sk) (11
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Fig. 4. For illustrative purposes, this diagram shows simple interactions
between the spatial, temporal, and causal And-Or graphs. When the width
w or height h of the shirt is larger than the target width wy or height hp,
the C-AoG triggers a fold action in an attempt to reach a smaller folded
shirt. The robot then folds the shirt to produce the desired width and height
(w < w¢ AND h < hy).

0 if ;(sj) = xi(sk)
1 otherwise

Azi(sj,8,) = {

By accumulating human demonstrations of an action, we
obtain a set of video clips Q, = {¢1, ¢, ...} for a specific
action a, where ¢; is a video clip showing action a. The
score w;(a) of an action to make a fluent change is defined
as:

Apz—11q,
Vj wi(a) = P(Azj =1 Q):Z’ﬁthq

\ 2= wila)?,

Fluents that represent specific properties, such as key-
points, tend to be heavier weighted than those that are broad
high-level concepts, such as shape [18]. The fluents are typ-
ically hand-chosen, but we suggest automatically generating
various abstractions of fluents by varying the dimensionality
of autoencoders. Recent work on spatial semantics [27] can
also initialize nodes with a set of useful fluents.

The STC-AoG is not just a knowledge representation
system, but also a hierarchical planning graph. Folding a
shirt using shirt fluents z1(s) and x2(s) has greater affor-
dance than that from using just abstract shape information
x1(s). That way, causal reasoning remains specific to the
object, guaranteeing that when folding a shirt, there is less
preference to use knowledge about how to fold pants if
knowledge about how to fold shirts already exists. We define
the affordance of transferring from state s; to s; using action
a by aff(a, s;, s;) = w(a)T Az(s;,s;), suggesting that the
automated planning and reasoning should only be based on
the relevant features.

Unifying the three sub-graphs produces a closed-loop
framework for robots learning from demonstrations. More-
over, graphs can store relationships in an intuitive and highly
regular structure, allowing for algorithms that rely on simple
graph manipulations. The real world is encoded through
perception into the S-AoG to form a physical belief state
of the world. The learning algorithm constructs a C-AoG to

12)

with the scores normalized by

understand actions from human demonstrations. And lastly,
inference combines the reasoning from the C-AoG and the
actuators from the T-AoG to physically perform the task. The
energy of the joint parse graph [12] combines the energy
terms of each:

Esrc(pg) = Es(pg) + Er(pg) + Ec(pg) + > Erl(r)
reRy,
(13)
We use generative learning by the Minimax Entropy
Principle [20] to learn the probability distribution of STC
parse graphs P(pg). Doing so assumes that the sample mean
of statistics ¢;(pg) should approach the true expectation s;
from observations. The parameters are solved by minimizing
the Kullback-Leibler divergence between the observed dis-
tribution and the candidate K L(f||p) = Ef[log f(pg)] —
E¢[logp(pg)]. This simplifies to a maximum likelihood
estimate, formulated by

P = argmax Ey[log p(pg)] = argmax Y _logp(pg;) + €
pe

PEQX i
(14
Iteratively, we choose the statistics ' = {¢1, ¢o, ...} that
minimize the entropy of the model, and the parameters [
that yield maximum entropy.

p" = argmin{max entropy (p(pg; )} (15)
F

Effectively, the robot “daydreams” possible probability dis-

tributions of parse graphs to converge with observations.

During inference, it samples a parse graph to perform the

action.

G. Learning Motor Control

The STC-AoG expresses explicit knowledge in a graph-
ical structure easily understandable by humans, acting as a
gateway for communication. However, the STC-AoG only
defines discrete salient spatial, temporal, and causal concepts.
The interpolation of how an individual action is performed
requires a specification of the fine motor skills involved as
well as an assignment of probability distribution parameters.

The explicit knowledge captured by a causal node repre-
sents a conformant plan learned by human demonstrations.
The information stored in the STC-AoG only provides re-
sults from discrete time-steps, ¢t € N. Its state-action table
represents fluent changes by x!*1(s) = f(z!(s),z'(a)). To
shift paradigms from explicit to implicit knowledge, we relax
the assumption of null run-time observability, and use a finer
distinction in time, z**9%(s) = f(2%(s),z*(a)). By learning
this continuous function f, the robot system is capable of
verifying, correcting, and inferring causal relations to adapt
to dynamic environments.

We make two assumptions to simplify the learning of f.
First, we restrict the range of spatial and temporal changes
to adhere to spatiotemporal continuity, rendering sudden
changes impossible. Second, we use a physical simulator
based on perception encoded by the STC parse graph (STC-
pg) to compare with reality at rapid time intervals. When a



discrepancy is detected, we point fault at the robot’s actions.
The feedback learning system uses a simplified optimization
process inspired by Atkeson et al [22] to update the control
mechanics. Adjusting the parameters of the simulator to
adhere to reality also reveals useful knowledge, but it is out
of scope for this study.

H. Inference

Obiectnode @
Action node <>
Flentnods  @m® ’\/ /\/

Pose node > 1 1
One- One- One- Two-
hand hand hand &ds

Agent  Patient Agent  Patient Agent  Patient agent  Patient
(Grip)  (Shirt)  (Grip) (Shirt)  (Grip)  (Shirt)

n_H
i g

(Shirt) (Grip)

Action Plan

Physical
Simulation

W % L3
- 7 ] < Nl

Execution

Fig. 5. The inference engine samples a parse graph to create a conformant
action plan. There is feedback between the plan, its simulation, and the
corresponding perceived execution.

Since the STC-AoG model is generatively learned, we
infer a parse graph through a simple sampling process. As
seen in Figure 5, the procedurally generated parse graph lays
out a conformant action plan for the robot. It then creates
a simulation of the action by converting the STC-pg into a
motion plan and spatial objects into 3D meshes from point
cloud.

The simulation plan is matched with reality at small
interval steps to verify that the robot is at its corresponding
simulated state. In case of substantial mismatch between
expected and actual states, the robot understands the action
did not complete, and that a new action plan must be
generated based on the latest perception input. Concretely,
the sampling procedure is encapsulated by the algorithm in
Figure 6.

IV. EXPERIMENTS

We conduct our experiments on a cloth-folding task. The
S-AoG models the physical status of the cloth, table, robot,
human, and various decompositions of each. The T-AoG
consists of three atomic actions to span the action-space for
this simple task: MoveArm(a), Grab, and Release. A Fold
action in the T-AoG is a higher-level And-node consisting of
four children: MoveArm(a), Grab, MoveArm(b), and Release,
with the corresponding textual representation: Fold(a,b) =
MoveArm(a); Grab; Move Arm(b); Release. And conse-
quently, a specific instance of folding is a series of Fold ac-
tions: FoldStylel = Fold(a,b); Fold(c,d);...; Fold(y, z).

1: while camera is producing image I do
2 ¢, «+ Interpret(Gg, I;)
pggs < Interpret(G s, L4
3 pgh < Sample(Gsro, pgs)
4 pgt < Sample(Gsre,pgs, poh)
5. pgsro < Merge(pgk, pgh, pge)
6: PerformWithFeedback(pgsTc)
7: end while

Fig. 6. The robot inference algorithm performs tasks on a learned STC-
AoG. It interprets the sensory input as spatial, temporal, and causal parse
graphs, which are merged to formed a joint representation that is sampled
and acted on.

Lastly, the C-AoG nodes describe how to fold a shirt from
one state to another, learned through human demonstrations.

We use Baxter, a two-armed industrial robot to perform
our cloth-folding task. Each arm consists of 7 degrees of
freedom that are adjusted through inverse kinematics relative
to the robot’s frame of reference. The robot’s primary per-
ception sensor is an Asus PrimeSense camera that provides
an aligned RGB-D (Red, Green, Blue, and Depth) point
cloud in real-time. In order to use localization results from
perception, we compute the affine transformation matrix
from the camera coordinate system to that of the robot. All
components interact together through the Robot Operating
System (ROS).

The STC-AoG is stored in the platform-independent
Graphviz DOT language, and used by our platform written
in C++. The hand-designed perception logic combines off-
the-shelf graph-based [24] and foreground/background [23]
segmentation to localize a cloth per frame. On top of that, we
train a shirt detector model using a Support Vector Machine
to facilitate narrowing down the search for an optimal S-AoG
parse graph. Each cloth node has a fluent x; describing the
low-level shape. If a cloth is a shirt, we represent the structure
of its keypoints as another fluent 5. We simplify learning
the probability distribution of parse graphs by limiting the
number of statistics to F' = {¢; }, where ¢, is the affordance
cost of the action sequence in a STC-pg.

Performance on a task is measured by the percent of suc-
cessful actions throughout the task. The overall performance
is the average of all task performances over multiple trials.
An action is successful if performing the action satisfies the
pre- and post-conditions of the causal relationship used.

A. Experiment Settings

In the first set of experiments, we measure the per-
formance of representing learned knowledge from human
demonstrations. After watching human demonstrations, the
robot generates an action plan step by step. The human
performs the action suggested by the robot, and at each step,
the human qualitatively verifies whether the robot’s action
was indeed the intended action as per the demonstration. If
verification fails in either case, then the action is marked
unsuccessful, and otherwise it is marked successful. This
performance score on learning will set the baseline for the
next set of experiments.



In the second series of experiments, we measure the
quality of grounding the learned knowledge to the robot’s
actions. This time we let the robot, instead of the human,
perform the actions. We compare the performance of the
robot folding clothes with the results from the first set of
experiments to evaluate the success of grounding physical
actions to see how well they match that of a human. The
expected performance should be less than the ground truth
established from the previous experiment.

In the third series of experiments, we measure the im-
provements from a feedback system compared to no feed-
back. We expect that the performance score calculated
through this step should be higher than that from the previous
experiment, but lower than the ground truth.

Finally, we are also curious how much we can stretch the
generalizability of a learned task. After demonstrating how to
fold a t-shirt, we ask the robot to infer how to fold different
articles of clothing, such as full-sleeve shirts, towels, and
pants. The criteria for generalizability of knowledge will
follow the similar performance procedure as in the previous
experiments.

B. RESULTS

On 10 trials per four sets of different t-shirt folding
demonstrations D1, Dy, D3, D4, we measure the average
performance of using our system to learn knowledge, ground
robot actions, and control feedback.

Performance of Our System
100

80 u Fold Style 1

= Fold Style 2
60

Fold Style 3

40  Fold Style 4
20
0

Plan Execution Execution with feedback
Fig. 7. Our learning system successfully understood the various folding

techniques. It had some difficulty executing the task using simply a confor-
mant plan, but with added feedback the execution was highly successful.

As seen in Figure 7, our knowledge representation system
was able to characterize the cloth-folding task enough to
faithfully communicate with a human, producing a learned
representation with an average performance of 90%. This
sets the upper bound for the next two inference experiments.
As anticipated, our framework was able to ground the actions
with a performance of 42.5%. The low score indicates that
although the robot knows what to do, there is still a dis-
crepency between the human’s action and that generated by
the STC-AoG. By adding feedback correction of comparing
perception to physical simulation, the performance leaped to
83.125%, also matching our expectation.

The performance of generalizability was measured after
training the robot on only t-shirt folding videos. The results
are visualized in Figure 8. For example, since a full-sleeve
shirt may have the same width and height fluents as that
of a t-shirt, the inference plan for folding a full-sleeve
shirt performed very well. Moreover, the robot was able to

Generalizability of Our System
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Fig. 8. Our knowledge framework correctly understood how to generalize
a t-shirt folding instruction to long-sleeve shirts and towels; however, it
expectedly had difficulty extrapolating its knowledge to fold pants.

generate reasonable action plans to fold a towel it has never
seen, since a t-shirt with both its sleeves folded resembles
the same rectangular shape of a towel. However, generating
a reasonable inference result for folding pants was less
successful due to the natural lack of knowledge transferred
between a shirt folding and pant folding task. Figure 9 shows
a few qualitative results of successful folding plans and
executions.

Fig. 9. Some qualitative results on the robot execution after learning from
human demonstrations.

V. DISCUSSION AND FUTURE WORK

The experiments show preliminary support for the expres-
sive power of the robot learning and execution framework
laid out in this paper. While we focus heavily in the cloth-
folding domain, the framework may be used for training
any goal-oriented task. In future work, we wish to continue
improving the robustness of each spatial, temporal, and
causal And-Or graph to optimize for speed and accuracy.

The STC-AoG acts as a language to ground knowledge
and reasoning into robot actions. Since the knowledge rep-
resentation and robot action planning systems share the
same And-Or graph data structure, the graph acts as a
programming language for the robot, and self-updating the
graph is an act of metaprogramming.

Due to the hierarchical nature of the STC-AoG, the
higher level nodes are readily articulated and understandable
by humans. are currently working on incorporating natural
language statements, commands, and questions to more
easily allow humans to manipulate the graph. To scale up
the graph for life-long learning, we are investigating other
practical storage solutions, including graph-based databases
such as Neo4j [30]. Since the graph is sufficient to transfer
knowledge, we can upload different skills to a cloud platform
and share knowledge between different robots.

Limits in physical reachability and dexterity of the robot
arms played a crucial difficulty in mapping action plans to
motor control execution. If a grip location was unreachable,



the conformant plan would fail to execute the action at all.
Fortunately, by introducing the feedback control system, we
were able to at least extend the reach as far as possible to
grip a reasonable point.

Lastly, the performance of the causal learning system
relies on successfully detecting fluent changes. This requires
adjusting thresholds for fluent-change detectors until the
results seem just right. We solved this problem by offline
supervised learning for our chosen fluents, but we set aside
the problem of learning these threshold parameters online to
future work.

VI. CONCLUSIONS

The stochastic graph-based framework is capable of repre-
senting task-oriented knowledge for tractable inference and
generalizability. It successfully unified theoretical founda-
tions of And-Or perception grammars to a practical robotics
platform. The experimental results support our claims for
grounding learned knowledge to execute tasks accurately.
We also express the generalizability of our framework by
extrapolating from human demonstrations of folding a t-shirt
to other articles of clothing. And lastly, our novel framework
can make use of perceived discrepancies between high-level
action plans and low-level motor control to verify and correct
actions.
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